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Fig. 1. Given a speech signal (audio and text) and a 3D face mesh, our method produces the expressive
lip-synchronized 3D facial animation with realistic facial expressions. Please see our supplementary video.

Speech-driven 3D facial animation with accurate lip synchronization has been widely studied. However,
synthesizing realistic motions for the entire face during speech has rarely been explored. In this work, we
present a joint audio-text model to capture the contextual information for expressive speech-driven 3D facial
animation. The existing datasets are collected to cover as many different phonemes as possible instead of
sentences, thus limiting the capability of the audio-based model to learn more diverse contexts. To address
this, we propose to leverage the contextual text embeddings extracted from the powerful pre-trained language
model that has learned rich contextual representations from large-scale text data. Our hypothesis is that the
text features can disambiguate the variations in upper face expressions, which are not strongly correlated with
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the audio. In contrast to prior approaches which learn phoneme-level features from the text, we investigate the
high-level contextual text features for speech-driven 3D facial animation. We show that the combined acoustic
and textual modalities can synthesize realistic facial expressions while maintaining audio-lip synchronization.
We conduct the quantitative and qualitative evaluations as well as the perceptual user study. The results
demonstrate the superior performance of our model against existing state-of-the-art approaches.
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Additional Key Words and Phrases: joint audio-text model, expressive speech-driven 3D facial animation,
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1 INTRODUCTION
Speech-driven 3D facial animation has garnered tremendous interest in computer graphics and
vision. It can be used in a wide array of potential applications, including computer games, film-
making, 3D telepresence system and other human-computer interactive interfaces. Generating
expressive lip-synchronized 3D facial animation from speech remains challenging. There appear to
be several reasons for this. First, the subtle changes in upper face expressions are weakly correlated
with the audio [Cudeiro et al. 2019; Karras et al. 2017]. The same audio signal can be associated
with different upper facial motion sequences and vice versa. Second, synthesizing natural facial
muscle movements is difficult due to the complicated geometric structure of human faces [Edwards
et al. 2016]. Third, the acoustic speech signal can vary from person to person due to the identity
and physical differences between speakers [Sjerps et al. 2019].
Most existing studies on audio-driven 3D facial animation [Edwards et al. 2016; Suwajanakorn

et al. 2017; Taylor et al. 2017; Zhou et al. 2018] focus on the issue of lip-synchronization, which
might lack realism in the upper face such as eyelids and brows. However, it is important to animate
a 3D talking avatar that produces speech utterances with vivid facial expressions. A small collection
of studies [Karras et al. 2017; Richard et al. 2021; Wang et al. 2021] emphasize on the synthesized
facial motions of the entire face as well as the lip-sync. The latest state-of-the-art approach [Richard
et al. 2021] adopts a cross-modality loss to disentangle the audio-correlated and audio-uncorrelated
face motions, thus ensuring the plausible animation of the upper face. Similar to [Karras et al. 2017;
Richard et al. 2021], our focus is animating a 3D face mesh with realistic muscle movements in both
the upper and lower face parts. On the other hand, we aim to predict the geometry of a 3D talking
head instead of the pixel values of a 2D talking head image [Chen et al. 2020, 2018, 2019; Chung
et al. 2017; Das et al. 2020; Ji et al. 2021; Mittal and Wang 2020; Prajwal et al. 2020; Vougioukas et al.
2020; Wiles et al. 2018; Zeng et al. 2020; Zhou et al. 2019, 2021]. In this paper, we present a novel
approach that combines acoustic and textual modalities to animate a 3D talking head with vivid
facial expressions, as illustrated in Figure 1. Given the audio and text signal, our method generates
expressive 3D face animation sequences which have synchronized lip movements to the audio and
realistic facial muscle movements (e.g., eye and eyebrow motions) for the entire face.

The human speech signal inherently involves both acoustic and textual features. Emotions can
manifest acoustically in measures such as the speaking rate and the fundamental frequency. On
the other hand, text contents can also convey the emotional state of the speaker. For example,
if the speaker frowns and says “It is the most dreadful news” in a neutral voice, then it would
be ambiguous when inferring the facial expression from the acoustic features. In this case, the
emotional state is mostly reflected through the expression of language, e.g., the word “dreadful”.
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Inspired by this, we investigate the hypothesis that integrating acoustic and textual context could
improve speech-driven 3D facial animation.

The pre-trained transformer-based representations [Devlin et al. 2018; Radford et al. 2019] have
proven to be successful in various natural language processing tasks. Our motivation is that the
pre-trained language model has learned rich contextual information, since it has been trained on the
large scale text corpora. While for the existing 3D audio-visual datasets of facial animation [Fanelli
et al. 2010; Karras et al. 2017; Richard et al. 2021], they only have a limited number of sentences.
Training a model with audio alone might limit its ability to learn more diverse contexts. Intuitively,
the high-level textual features could aid in understanding the emotional context of the speech.
Previous studies on speech-driven gesture generation [Kucherenko et al. 2020; Yoon et al. 2020]
have demonstrated the effect of the text modality and verified that using text and audio modalities
together can further improve their results. Therefore, we exploit the text embeddings from GPT-
2 [Radford et al. 2019] and incorporate them as part of input features to our model. This is different
from previous linguistics-based methods which usually extract the phoneme-level features from
the transcript. To the best of our knowledge, there has been no previous attempt at exploring the
language model to resolve the ambiguity of facial expression variations for speech-driven 3D facial
animation.
In our method, the language and acoustic modalities are modeled through two subnetworks

separately. Furthermore, it is desirable to take into account the bimodal interactions between audio
and text cues. To this end, we build a fusion layer, named Tensor Fusion [Zadeh et al. 2017], in
our model to disentangle unimodal and bimodal dynamics. The Tensor Fusion layer explicitly
models the unimodal and bimodal interactions based on the Cartesian product of audio and text
embeddings. Ideally, considering audio and text modalities and their interactions should capture
a wide range of variations in the speech. This allows the model to learn more expressive joint
representations for facial expressions.

In summary, our main contributions include:

• Exploiting the contextual text embeddings for speech-driven 3D facial animation. Considering
the potential use of a strong pre-trained language model, this work has implications for
producing more expressive facial motions using audio and text signals as inputs.

• Providing meaningful insights into the effect of the text modality on the upper part of the
predicted face mesh by performing visualization analysis.

• Extensive evaluation of the proposed approach on a 3D audio-visual corpus [Fanelli et al.
2010] and a perceptual user study of facial animation quality in terms of realism. The results
show that our approach can synthesize more realistic 3D facial animations, as compared to
existing state-of-the-art approaches.

2 RELATEDWORK
Speech-driven facial animation has been a popular topic in computer graphics and vision. In
computer vision, it is also known as talking face generation. Here we mainly review the previous
speech-driven 3D facial animation approaches, where the output is the 3D mesh animation. The
related works can be categorized into two broad groups: linguistics-based methods and audio-based
methods.

2.1 Linguistics-based Methods
The concept of phonemes is well developed in speech animation. Viseme [Fisher 1968] is derived
from a set of phonemes that have similar visual appearances on the lips. The popular dominance
model [Massaro et al. 2012] uses the dominance functions of consecutive phonemes and determines
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the influence of each phoneme on the respective facial animation parameters. Taylor et al. [2012]
propose the one-to-many phoneme to viseme mappings, a.k.a. dynamic visemes, using a data-driven
method. Xu et al. [2013] define the animation curves for a canonical set of visemes to achieve the
coarticulation effects. Alternatively, Edwards et al. [2016] introduce the linguistic rules to animate
the phonemes of a JALI (Jaw and Lip) rig, which is built upon the Facial Action Coding System
(FACS). The follow-up work VisemeNet [Zhou et al. 2018] predicts a stream of phoneme-groups
and facial landmarks from audio, and produces the JALI parameters used for animating the 3D face.

Previous linguistics-based approaches focus on synthesizing the synced mouth movements and
explore diverse forms of complex linguistic rules, including phoneme-to-viseme mapping and
coarticulation. Unlike them, we aim to discover high-level semantic features that might correspond
to the emotional state, as such text representations would be useful for facial expression synthesis.

2.2 Audio-based Methods
Recently, a variety of approaches for animating the 3D talking avatar from audio have been proposed.
The earlier method [Cao et al. 2005] implements a support vector machine classifier to detect the
emotional state of the input audio and then synthesizes the 3D animations. Pre-labeling emotion
categories is required, such as happy, sad and angry, for all the sentences. Karras et al. [2017]
disambiguate the variations in facial expression by introducing a latent emotional state vector. They
collect 3–5 minutes of animation data for two subjects. However, their model is person-specific
and not applicable to unseen speakers. Taylor et al. [2017] propose a sliding window approach on
phoneme subsequences and generalize their model to other avatars via re-targeting. Pham, Cheung,
and Pavlovic [2017] obtain the blendshape coefficients from the 2D videos first. Subsequently, the
predicted coefficients are regarded as ground truth for training an audio-to-face model. Despite the
generalization ability, both methods [Pham et al. 2017; Taylor et al. 2017] rely on 2D videos rather
than high-resolution 3D face scans, which may influence the quality of the resulting animation.
The CNN-based model VOCA [Cudeiro et al. 2019] extracts the audio features from a pre-trained
DeepSpeech model [Hannun et al. 2014] and then learns the mapping of audio to the 3D vertex
offsets of a face model. However, as can be noted, VOCA only learns the facial motions that are
mostly present in the lower part of the face. In a recent work, MeshTalk [Richard et al. 2021], the
cross-modality loss is employed to disentangle the information about upper and lower face motion,
thus generating full facial 3D animation from speech.

The approaches closely related to ours are VOCA [Cudeiro et al. 2019], MeshTalk [Richard et al.
2021] and the Audio2Face model [Karras et al. 2017] in the sense that their models are trained
on high-resolution 3D face scans and are designed to decode the learned representations to 3D
vertex space. Different from their methods using audio features alone, we propose to incorporate
the contextual embeddings from Transformer-based GPT-2 to aid in understanding the emotional
context, in order to produce a more diverse range of facial expressions.

3 METHOD
3.1 Overview of the Architecture
The pipeline of our proposed method is illustrated in Figure 2. Overall, the network is composed
of four main components: the audio encoder, the text encoder, the tensor fusion module and the
decoder. The speaker identity is represented as a one-hot vector. The audio-text embeddings are
mapped into a high-dimensional space of 3D vertex offsets, i.e., 70110 outputs. In the end, the
predicted vertex offsets are added to the vertices of the neutral template mesh, generating the
expressive 3D face animation sequence.
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3.2 Problem Formulation
Let us assume a video sequence of T face meshes Y = [y𝑡 ]𝑡=1:T, each of which has V vertices in 3D
coordinates. Given a sequence of acoustic features Xa = [xa𝑡 ]𝑡=1:T as well as the textual features
Xl = [xl𝑡 ]𝑡=1:T, our goal is to predict the corresponding 3D facial animation sequence Ỹ = [ỹ𝑡 ]𝑡=1:T.
Since the speech signal and the facial movements are synchronized temporally, we explicitly align
the audio and text features to the corresponding video frame.

3.3 Audio Encoding
Inspired by [Oord et al. 2016; Richard et al. 2021], we adopt a stack of four dilated temporal
convolutional layers as the first part of the audio encoder. Dilated convolutions [Yu and Koltun
2015] were first proposed in computer vision for context aggregation. Here we use the time-dilated
convolution so that the feature maps and output can keep the high-resolution information of the
input in the temporal domain. Formally the dilated discrete convolution operation can be described
as follows:

(F ∗𝑙 k) (p) =
∑︁

𝑠+𝑙𝑡=p
F(𝑠)k(𝑡), 𝑡 ∈ [−𝑟, 𝑟 ], (1)

where ∗𝑙 denotes the convolution with dilation factor 𝑙 , F is a discrete function, p is the feature map,
and k is the filter with size (2𝑟 + 1)2. Particularly, ∗𝑙 supports exponentially increasing the receptive
field without losing resolution. Hence, we empirically use a dilation factor that is exponentially
increased with respect to the network depth. Each convolution layer has the same number of filters
and the same kernel size, followed by the LeakyReLU activation. Besides, the residual connections
are used to maintain the temporal information about input acoustic features.

Similar to [Cudeiro et al. 2019], we indicate the speaker identity with a one-hot vector to model
the speaking style. This one-hot vector is concatenated to the output of the final convolution layer
of the audio encoder, forming the input of the following fully-connected layer. During inference,
altering the one-hot vector can manipulate the output animation in different speaking styles.

3.4 Text Encoding
The introduction of transformers [Vaswani et al. 2017] has shown promise in the field of language
and vision. Transformer-based models have been applied to capture the contextual information of
different modalities such as text and image [Ramesh et al. 2021]. To incorporate the contextualized
semantic features, we adopt the pre-trained Transformer-based language model, GPT-2 [Radford
et al. 2019], to process the input text modality. Specifically, each sentence is encoded into 768
features per word. Due to different sequence lengths of text and audio, we upsample the GPT-2
features to match the length of the audio feature sequence according to the duration time of each
word. The text encoder consists of two fully-connected layers, a LeakyReLU layer and an LSTM
layer. The outputs of the text encoder are taken as the features for the text modality.

3.5 Tensor Fusion
At the fusion stage, we apply a tensor fusion layer [Zadeh et al. 2017] to disentangle the unimodal
dynamics and bimodal interactions. Prior studies on multimodal fusion [Poria et al. 2016; Zadeh
et al. 2017] have demonstrated that this method can better capture multimodal interactions than
the simple concatenation operation. The tensor fusion layer first obtains the unimodal feature
vectors, namely the audio embedding Ha and the language embedding Hl, by passing the unimodal
inputs Xa and Xl into the audio encoder and the text encoder, respectively. Subsequently, the tensor
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Fig. 2. Overview of our method. First, the raw audio is converted into mel spectrogram whereas the text
representations are extracted from the pre-trained GPT-2. Second, these extracted features are fed to the
respective encoders to produce the audio and text embeddings. The one-hot speaker embedding is concate-
nated to the output of the final convolution layer of the audio encoder. Third, we employ a tensor fusion
layer to fuse the encoded contextual features of audio and text modalities. Finally, the decoder produces a
sequence of animated 3D face meshes, each of which is represented as a 23370-dimensional vector in 3D
vertex coordinates.

fusion layer produces the multimodal output representation Hm by performing a differentiable
outer product operation, which is computed by:

H𝑚 =

[
H𝑎

1

]
⊗
[
H𝑙

1

]
, (2)

where ⊗ denotes the outer product. The interpretation of tensor fusion is illustrated in Figure 2.
The multimodal dynamics are generated by adding an extra constant dimension with value 1. This
results in a 2-D Cartesian space, where the horizontal and vertical axes are defined by [H𝑎 1]𝑇 and
[H𝑙 1]𝑇 , respectively.

3.6 3D Facial Animation Generation
In the decoder module, the sequence of T fused features Hm = [hm𝑡 ]𝑡=1:T obtained in Equation 2
is fed to a fully-connected layer to project it to a lower-dimensional output vector space. After
that, two bidirectional LSTMs are applied to model temporal dependencies. The bidirectional LSTM
makes use of both the preceding and succeeding context information by processing the sequence
both forward and backward. Finally, the output sequence of two bidirectional LSTMs is used as
the input sequence of a fully-connected layer, which maps the learned representation to 3D vertex
space. Therefore, the decoding flow can be described as:

[ỹ𝑡 ]𝑡=1:T = FC(BLSTM(FC( [hm𝑡 ]𝑡=1:T))) . (3)

During the training phase, we minimize the mean squared difference between the ground-truth
vertices Y = [y𝑡 ]𝑡=1:T and the corresponding outputs Ỹ = [ỹ𝑡 ]𝑡=1:T produced by the decoder, which
is computed as follows:
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L =

T∑︁
𝑡=1

V∑︁
𝑣=1

ỹ𝑡,𝑣 − y𝑡,𝑣
2 . (4)

4 EXPERIMENTS
4.1 Dataset
We train and evaluate our models using the publicly-available audio-visual dataset BIWI [Fanelli
et al. 2010]. This corpus involves 14 native speakers (8 females and 6 males), each of which utters 40
short English sentences. The corresponding text transcriptions are also provided. The 3D geometry
data of the performance of the speaker is acquired at 25 fps. All face meshes have the same topology
and the same number of vertices (23370). For each speaker, the static face mesh with a neutral
expression is provided as the template. Each sentence lasts 4.67s long on average and is recorded
twice: with and without emotion. We use the sentences recorded in the emotional context for our
experiments and remove the sequences that are not complete in terms of the tracked 3D face scans
or the audio files.

We divide the dataset into training, validation and testing parts. The training set is composed of
192 sentences, pronounced by six subjects (each subject utters 32 sentences). The validation part
contains 24 sentences, pronounced by the same six subjects (each subject utters 4 sentences). The
testing part includes two sets of test sentences: the first are 4 sentences of the same six subjects in
the training set, i.e., 24 sentences (Test set A); the second is a set of 4 sentences of eight subjects
not seen in the training set, i.e., 32 sentences (Test set B). No overlap of sentences exists in the
training, validation, and test sets, and there is no overlap of subjects presents in the training set
and Test set B. Here Test set A is used for quantitive evaluation whereas Test set B represents a
more challenging set where the subjects are unseen.
As the 3D motion capture process is very expensive, a smaller training set is deemed desirable.

The pioneer work [Karras et al. 2017] demonstrates a small amount of 3D data (3-5 minutes) are
enough for training a deep network. Hence, we consider using 192 sentences (about 18 minutes in
total) to train our network is feasible. Also, our model benefits from the language model that has
been trained on a large scale text corpora. This makes our system easier to generalize well to novel
sentences.

4.2 Implementation Details
4.2.1 Data pre-processing. To extract the audio features, we utilize the librosa [McFee et al. 2015]
library to transform the raw audio to 128-channel mel-frequency power spectrograms and convert
the power spectrograms to decibel (dB) units. Besides, we synchronize the input audio sequence to
the corresponding 3D face animation sequence at 25 fps. Hence, the input audio feature vector for
every visual frame has 128 dimensions. For the text features, we extract the word representations
from the pre-trained GPT-2 small model [Radford et al. 2019] (12 layers, 768-dimensional hidden
state). To ensure that the input audio and text feature sequences share the same time steps, we
employ the Gentle forced aligner [Ochshorn and Hawkins 2017] to find the start and end timestamps
of each word within a sentence. Given the known duration time of each word, we apply zero padding
to the frames that do not contain a word as there is usually a pause between words. For each word
that contains semantic information, we repeat the extracted word representation according to the
word’s duration time. The text feature vector for every visual frame has 768 dimensions. Then,
we set each text feature vector to the average of its surrounding text feature vectors (previous 8
vectors and future 7 vectors). After pre-processing, both the input audio and text feature sequences
have the same length as the 3D face animation sequence.
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Table 1. Quantitative evaluation of different methods. We report the mean absolute error (MAE) between
the ground-truth data and the generated results for AU coding consistency evaluation.

Methods Upper Face AUs Lower Face AUs

VOCA 0.278 ± 0.133 0.229 ± 0.093
MeshTalk 0.236 ± 0.124 0.230 ± 0.096
Ours 0.221 ± 0.117 0.212 ± 0.085

Table 2. Perceptual user study results. The number reports the percentage (%) of A/B tests where A is chosen
over B.

Model Pairs Full Face Upper Face Lips

Ours/VOCA 84.20 ± 6.21 84.20 ± 6.17 84.90 ± 6.81
Ours/MeshTalk 71.35 ± 3.13 68.92 ± 5.00 71.88 ± 3.65
Ours/GT 19.79 ± 5.73 24.48 ± 9.39 19.27 ± 6.14

4.2.2 Network architectures. The overall architecture of the model is shown in Figure 2. The audio
encoder first applies 4 dilated convolutional layers each equipped with 128 filters of size 3 × 3. The
dilation factors of these convolutions are 1, 2, 4 and 8, respectively. Each dilated convolutional
layer is followed by the LeakyReLU activation. Additionally, the encoder uses residual connections
between layers. The output of the dilated convolutions is then concatenated with a 6-dimensional
one-hot vector. Finally, the concatenated feature vector goes through a 128-unit FC layer. The text
encoder consists of a 128-unit FC layer, a LeakyReLU layer, a 64-unit FC layer and a 64-unit LSTM
layer. The tensor fusion layer takes a 128-dimensional audio embedding vector and a 64-dimensional
text embedding vector as inputs and produces a high-dimensional feature vector. The subsequent
decoder consists of a 128-unit FC layer, two 128-unit bidirectional LSTM layers and a 70110-unit
FC layer.

4.2.3 Training setup. All the experiments are implemented using PyTorch. In the training stage,
the optimization function is Adam, with a constant learning rate of 1e-4 and a batch size of 1. We
train our model for 100 epochs and apply it to the testing data directly.

4.3 Comparisons Against State-of-the-Arts
We compare our method with the state-of-the-art approaches in speech-driven 3D facial animation,
VOCA [Cudeiro et al. 2019] and MeshTalk [Richard et al. 2021]. We use the publicly available
implementation for VOCA and train the model on BIWI. Since the implementation of MeshTalk is
not publicly available yet, we reproduce their method to the best of our understanding.

4.3.1 Quantitative Evaluation. Given the many-to-many mappings between the speech signal and
the facial expressions, it is not adequate to use the norm on the prediction error between the
original and generated outputs to measure the quality of speech-driven 3D facial animation, as
suggested by the previous study [Cudeiro et al. 2019]. The related works [Cudeiro et al. 2019; Karras
et al. 2017] only include the perceptual and qualitative evaluations. Since we focus on the realism
of facial expressions, we perform the quantitative evaluation based on the popular facial action unit
representation FACS [Eckman and Friesen 1978]. FACS is the “gold standard” for quantifying facial
muscle movements, a.k.a., Action Units (AUs). The combination of different AUs can represent all
possible facial expressions. Here we first render both the ground-truth and generated 3D geometry
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data with texture as 2D videos with a resolution of 800×800. Then we utilize OpenFace [Baltrušaitis
et al. 2016] to detect the AU intensities for the rendered videos. The mean absolute error (MAE) is
used as the performance metric for evaluating the AU coding consistency between the ground-truth
and generated results. We categorize all AUs into two groups: upper face AUs (AU1,2,4,5,6,7,9 and
45) and lower face AUs (AU10,12,14,15,17,20,23,25 and 26), and compute the average MAEs for
these two groups, respectively. The quantitative evaluation for all the methods on Test set A of the
BIWI dataset is summarized in Table 1.

Since the subtle facial movements are difficult to quantify, we recommend watching the clips in
the supplementary video to assess the quality of the results.

4.3.2 Perceptual Evaluation. We carry out the perceptual user study on Amazon Mechanical Turk
(AMT). We compare our approach to VOCA, MeshTalk and the captured ground-truth data using
all sentences of Test set B, i.e., 32 sentences each spoken by a subject not seen in the training
set. For VOCA and our method, we obtain the prediction results conditioned on all six training
identities. Therefore, 192 (32 sentences × 6 identities) pairs are evaluated for each row in Table 2.
In total, 576 A vs. B pairs are created. In our study, a HIT consists of four pairs, one of which is
used for qualification test (ground-truth vs. result produced by a not well trained model). Each HIT
is evaluated by 3 judges and a total of 576 HITs are collected. Turkers are required to make the
right choice for the qualification test before they are allowed to submit HITs. For each pair, two
animations with the same subject and audio are presented side-by-side and three questions are
designed in terms of the full face, the upper face and the lips. Turkers are instructed to watch the
videos and asked to determine which animation looks more realistic for each given question. We
shuffle the order of the videos and also randomize which method is A and which is B for each pair
to eliminate any bias.
In Figure 3, we show the designed user interface on Amazon Mechanical Turk (AMT). The

recruitment requirement is that the participants must have an HIT (human intelligence task)
approval rate of at least 95% and have finished over 5000 HITs. 576 HITs were created and a total of
156 unique workers completed our HITs.

Table 2 shows the comparison of success rates of our method against VOCA, MeshTalk, and the
ground truth. In comparison to VOCA, our method wins about 84% of the pairwise comparisons for
the three face parts. This is not surprising as VOCA does not synthesize the upper face movements
well. Turkers perceive the animation results of our method more realistic than those of MeshTalk,
with the success rate of 71.35% for the full face, 68.92% for the upper face and 71.88% for the lips. As
expected, the animations synthesized by our approach are generally perceived as less realistic than
the ground truth, with the success rate of 19.79% for the full face, 24.48% for the upper face and
19.27% for the lips. The result is similar to that reported in [Cudeiro et al. 2019], as inferring from
speech alone can not synthesize the subtle subject-specific details of the unseen subjects [Cudeiro
et al. 2019].

4.3.3 Qualitative Evaluation. The supplementary video includes qualitative comparisons with the
captured performance data, VOCA and MeshTalk. We also compare our results with the dynamic
viseme method [Taylor et al. 2017] and the emotion-driven method [Karras et al. 2017] using the
footage from their supplementary videos. To validate the ability to synthesize different speaking
styles for the same speech, we provide the generated results by conditioning on all six training
subjects. To assess the generalization capability of our model, we test our model using the speech
clips extracted from TED videos on YouTube. As shown in the supplementary video, our method
produces realistic and natural-looking facial animations, synthesizes various speaking styles and
generalizes to unseen voices. More importantly, the generated facial motions appear to be expressive
when the emotional state of the speaker is obvious. We can notice that the talking avatar shows
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Fig. 3. Screen shot of the user interface on AMT.

more expressive facial movements when saying certain emotional words, e.g., “great”, “thank you”,
etc. Please refer to the supplementary video for qualitative results.

4.4 Ablation Study
4.4.1 Ablation on the input modalities. To explore the importance of different input modalities,
we carry out an ablation experiment to compare the performance among unimodal and bimodal
models. From Table 3, the bimodal model “Audio+Text” performs best, outperforming the unimodal
models “Audio Only” and “Text Only”. It can be observed that using text alone has relatively large
errors for the lower face AUs, whereas using audio alone degrade the performance for the upper
face AUs. This suggests that the text information is beneficial in learning the variations in the
upper face expressions and the audio information has a more strong correlation with the mouth
movements. With both the audio and text modalities incorporated, the bimodal model leads to the
best performance for the upper and lower face AUs. This indicates that audio and text modalities
are complementary to each other. We also provide qualitative examples for modality ablation in
our supplementary video. From the videos, we find that using the text alone generates expressive
muscle movements in the upper face part, e.g., opening the eyes wide when pronouncing the word
“thank”.
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What an

excellent

room you

sir.

have,

Such

expensive

furnishings!

143-161 
frames: silent

Fig. 4. t-SNE visualization of the text embedding. The data points represent the projected text features. The
color of each point corresponds to the AU5 intensity predicted from the corresponding rendered video frame.
Left: the projected text features from all testing sentences of a subject. Right: the projected text features from
one testing sentence of the same subject.

4.4.2 Ablation on the fusion methods. Additionally, we conduct an experiment to compare the
performance of the bimodal model using different fusion methods. As presented in Table 3, the
tensor fusion strategy brings improvements compared to the simple concatenation method. This
implies that the tensor fusion layer can better combine the audio and text cues. The 2-D Cartesian
space might capture more variations in the speech, and hence allow a more expressive space for
modeling the facial expression. Besides, we conduct qualitative comparisons between the two fusion
strategies to show the visual differences. As shown in the supplementary video, we observe that
the results generated by the model with the tensor fusion strategy have better temporal stability in
the mouth region.

4.5 Analysis of the Text Embedding
Figure 4 shows a visualization of the extracted text features from the final output of the text encoder.
We project the text features of all the testing sentences of a testing subject to 2-dimensional space
using t-SNE. We can see that the text features of the words within the same sentence are usually
clustered. To better understand the text embeddings, we zoom in on the data points of one sentence
(“What an excellent room you have, sir. Such expensive furnishings!”) of the same subject, as shown
in the right side of Figure 4. Given the known duration time of each word within the sentence, we
put the words close to the corresponding data point. We also visualize the corresponding generated
facial expression to uncover how the facial expression changes when the word is changed. Colors
from purple to yellow denote lower and higher AU5 (Upper Lid Raiser) intensity. In addition to the
clusters, we observe that the AU5 intensity is higher for some words such as “excellent”. According
to the relationship between AUs and emotions [Friesen et al. 1983], AU5 is correlated with surprise,
which also implicitly reflects the emotional state of the speaker. As can be noticed, there are some
isolated data points in the lower part of the figure, meaning that those frames do not cover a word.

11



I3D’22, May 03–05, 2022, Fan, et al.

Table 3. Ablation experiments on different input modalities and different fusion methods. The evaluation
metric is mean absolute error. C = Concatenate, TF = Tensor Fusion.

Methods Upper Face AUs Lower Face AUs

Audio Only 0.251 0.224
Text Only 0.247 0.253
Audio+Text (C) 0.225 0.218
Audio+Text (TF ) 0.221 0.212

Fig. 5. Correlation between the encoded features (left: audio; right: text) and the predicted vertex offsets.
The correlation is measured by the absolute value of the Pearson Correlation Coefficient. Colors from blue to
red represent lower and higher strength of correlation.

Additionally, we analyze which regions of the generated face mesh are influenced by the audio
and text modalities. Specifically, after extracting audio and text features from their encoders, we
calculate the absolute value of the Pearson correlation coefficient between the specific modality
features and each predicted vertex offset (in total 23370 vertices). The greater the absolute value is,
the stronger the relationship is. As shown in Figure 5, color codes are for strength of correlation.
The Pearson analysis suggests that the audio modality has a strong association with vertices in the
mouth region, and is moderately correlated with vertices in the cheek region. In contrast, the text
modality shows a strong relationship with vertices in the upper face region, and also influences
vertices in the cheek and upper lip regions.

5 CONCLUSION, LIMITATIONS, AND FUTUREWORK
In this work, we present a novel approach for expressive speech-driven 3D facial animation based on
audio and text. We pioneer the use of the pre-trained language models and feel that the contextual
text embeddings offer great promise to this field for producing more expressive facial motions.
Our method exhibits better performance against previous approaches, which we show through
quantitative and qualitative analysis and perceptual user studies. However, the proposed model
also presents limitations and sometimes fails to model the lip closure well when encountering
certain plosives. On the other hand, due to the limitations of the current data, our model lacks
some additional motions such as eye gaze and head movement. Future work may include studying
the correlations between the speech signal and other subtle motions to achieve a higher level of
conversational realism. Also, the use of one-hot encoding potentially limits the scaling ability of
our system to a larger number of subjects. This can be addressed by replacing the one-hot vector
with an identity encoder. In the future, we will collect 3D visual-audio data of many subjects and
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take into account subject-specific details by using an identity encoder, in order to improve the
generalization ability of our model to arbitrary subjects.
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A QUALIFICATION TEST FOR USER STUDY
In the user study, the qualification test is designed to avoid Turkers to select the answers randomly.
If they failed to pass the test, a warning message would pop up when they clicked the submit
button, as shown in Figure 6.
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Fig. 6. Warning message of the hidden test.

15


	Abstract
	1 Introduction
	2 Related Work
	2.1 Linguistics-based Methods
	2.2 Audio-based Methods

	3 Method
	3.1 Overview of the Architecture
	3.2 Problem Formulation
	3.3 Audio Encoding
	3.4 Text Encoding
	3.5 Tensor Fusion
	3.6 3D Facial Animation Generation

	4 Experiments
	4.1 Dataset
	4.2 Implementation Details
	4.3 Comparisons Against State-of-the-Arts
	4.4 Ablation Study
	4.5 Analysis of the Text Embedding

	5 Conclusion, Limitations, and Future Work
	Acknowledgments
	References
	A Qualification Test for user study

